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NOL HYPERSONIC TUNNEL NO, 4 RESULTS VII:
EXPERIMENTAL INVESTIGATION OF TURBULENT
BOUNDARY LAYERS IN HYPERSONIC FLOW

Prepared by:
R. Kenneth Lobb, Eva M. Winkler, and Jerome Persh

ABSTRACT: Naturally turbulent boundary layers on the wall
of a wedge-type water-cooled nozzle in the NOL 12 x 12 cm
Hypersonic Tunnel No. 4 have been investigated at Mach
numbers of 5.0 to §.2 with and without steady statc heat
transfer to the surface. The Reynolds number basec¢ on
noundary layer momentum thickness was varied from 5,000 to
13,000. Measurements of Pitot and static pressures, total
and wall temperatures, and rates of heat transfer made it
possible to compute velocity profiles, temperature profiles.
and boundary layer parameters without resorting to any
assumptions. The turbulent portion of the boundary layer
velocily profile was found to differ from the incompressille
flow logarithmic law Uy sn amount that depends on the heat
transfer and Mach number. The data for the outer turbulent
portion for any onc ilach number fall on a single curive if
plotted in a particular nondimensional coordinate system
which is bLased on local properties in the boundary layer.
The velocity profile in the laminar sublayer is linear. The
thermal sullayer was fcund in all cases to be larger than
the velocity sublayer. Local skin friction coefficients

for zero heat transfer as calculated from thc velocity Sradi-
ents at the wall arc consistent with the results of other
experimenters at lower Mach numbers for the same Reynolds
number. Furthermore it is demonstrated that the Reynolds
analogy Letween skin friction and heat transfer 1s valic at
Mach numbers up to 8§.2.

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
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This is the seventh NAVORD Report on an investigation

carried out in the continuous NOL 12 x 12 cm Hypersonic
Tunnel No. 4. The titles of the previous NAVORD's describing
results from the tunnel are:

I. Air Liquefaction. NAVORD 1742, 4 January 1951
II. Diffuser Investigation. NAVORD 2376, 5 May 1952

I11.Biffuser Investigziion with Models and Support.
NAVORD 2435, 1 July 1952

IV, High Supply Temperature MNeasurement and Control.
NAVORD 2574, 8 October 1952

V. Experimental and Theoretical Investigation of a
Cooled Hypersonic Wedge Nozzle. NAVORD 2701,
13 April 1953

VI. Experimental and Theoretical Investigation of the
Boundary Layer and Heat Transfer Characteristics
of a Cooled Hypersonic Wedge Nozzle at a Mach
Number of §.5. NAVORD 3757, 8 July 1954

The present NAVORD (Results VII) presents experimental
investigations and discussions of turbulent boundary layers
in hypersonic flow.

Knowledge of the related effect of skin friction and z2¢ro-
dynamic heating at high Mach numbers is needed by the
designers of hypersonic vehicles because, for slencer
missiles, skin friction represents the major part of the
drag and extreme surface temperatures produced by frictional
heating may very well be a limiting design factor.

A portion of the results contained in this NAVORD were
presented at the 22nd Annual Meeting of the Institute of
Aeronautical Sciences and also at the Bureau of Ordnance
Committee on Aeroballistics Symposium in October 1954. The
present report contains additional results and more detailad
analysis of the data as well as a complete tabulation of the
experimental results.

This work was jointly sponsored by the U. S. Naval Bureau of
Ordnance and the U. §. Air Force. It was carried out under
Tasks NOL-M9a-108-1-54, NOL-!49a-133-1-55. and
NOL-M9a-133-5-55.

Tre authors are indebted to Dr. R. E. Wilson for meay stimu-
lacing discussions during thie course of the investigations.
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The numerical evaluation of the boundary layer surveys was
done on a card-programmed calculator of the Applied Mathe-~
matics Division. The preraration of the data for the card-
programmed calculator was greatly assisted by Dr. E. K. Blum.
The cooperation of Messrs. L. L. Liccini and R. Garren, Jr.,
who participated during the tests, is acknowledged.

JOHN T. HAYWARD
Captain, USN
Commander

H. H. KURZWEG, Chief
Aeroballistic Rescarch Departmeni
By direction
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SYMBOLS
lccal skin friction coefficient Lasaed on frogc-sircan
2T w
conditions 7
Po U

inconmpressible local skia frictioan coefficient for
zero heat transfer based on free-siream conditions

specific heat at constant pressure
toundary layer shapc paramcter A*/9
thermal conductivity

Mac:. -mber

Nusselt .. ~er for stagnation temperature probe

Prandtl numbe:

stagnation pressure
Pitot pressurc

static pressure

Gas constant

Reynolds numher based on iree-stream conditions
recovery factor

Stanton number (equation (3))

local stagnation temperature

stagnation temperature as measured by a stagnstion
temperaturc probe

local static temperature
velocity
velocity componcnt perpendicular to wall

3

friction velocity ( T@/}9)

vi



[+

e

=T o

NAVORD Report 3880
velocity parameter u/up ( P based on wall properties)
velocity parameter u/ug ( p based on local properiies)
distance nerpendicular to wall

wall distance parameter y ug /¥ (P and P based on
wall propertics)

wall distance parameter y ug /¥ (P and ¥ based on
local properties)

ratio of specilic heats
total Loundary layer thickness d/!~
boundary laycer displacement thickness S { -_Poo“aa ]dy

A
momentuim thickness “/f [i - ———]dy
3 .Poo“a)

viscosity
kigematic viscositly
density

shear strrss

Subscripts
equilibrium wall tcmperature for zero heat transfer
physical properties of gas
edge of laminar sublayer
temperaturc prcbhe
physical properties of thermocoupic wire
temperature profilce
velocity profile
values based on wall conditions
values based on momentum thickness
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w® values bas 'd on free-stream conditions outside
boundary layer

2 conditions behind shock ir frcnt of prote
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J{OL HYPERSONIC TUNNEL NO. 4 RESULTS VII:
EXPIRIMENTAL INVESTIGATION OF TURBULENT
DOUNDARY LAYERS IN HYPERSONIC FLOW

INTRODUCTION

1., DBoundary layer investigations at hyperscnic speeds are
of immediate practical interest since friction drag and

heat transfer data are needed by the desijners of hypersonic
missiles.

2. From the theoretical viewpoint, various treatments of the
problem are available for the case of laminar “oundary layer
flows as well as for turbulent boundary layers. The experi-
mental data are, however, limited, and in general cover the
Mach number range up to about 5. The lack of experimental
confirmation for iaminar boundary layer theory is not
regarded as serious since the thcory is coasidered to bLu morc
or less exact. Most of the analyses of compressible turbu-
lent boundary layer flows, however, arc based on experaimental
results obtained in wholly inccmpressible flow. Tae uncer-
tainties in these analyses have led to large discrepancies

in the prediction of skin friction and hecat transfer. ELven
thnse theories which agree with each other and with the xist-
ing experimential data wathin 5 percent up to Hach numbers of
S5 differ greatly at hypersonic Mach numlers {reference (a)).

2. The purpose of the present investligation was to oxtenc
the Mach numiuer ranje of availalble data and also to attempt
to provide a deeper insight into the characteristics of a
turbulent boundary layer in compressible flows.

Experimental Lgquipment and Techiniques

4. The Loundary laycr surveys have been conducted in the
NOL 12 x 12 cm Hypersonic Tunncl No. 4, which is described in
references (L), (c¢), and (d). Thas tunncl operates contin-
uously in the Mach nuater ranae from 5 to 16 free of air
condensation effects. Supply temperaturcs from 300 to S00° K
and supply pressures from 1 t¢ i5 atmospheres are available.
two-dimcusional watlcir-cooled wad,;e nozzle expands the air
and can be adjusted for any Mach number saimply by changing
the throat openin;, area.

5. uc anvesti;;ations were made for a ran.c of Mach numlers
varying froem 5 to about 3. For ecach Macl numbier scveral
surveys were mave difforan, an the Reynolds numter and the
rate of heat transfer to the wall. The surveys were mace

at the center of once nozzle wall, approximately four inches
upsirecan of the nozzle exat nlane, Ficure 1. Measurcments

at this pos.t.on are unaffectcd by the junction of the nozzlce

1
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cad and the first diffuser plate (reference {(e)). The rela-
tavely thick {approximately 25 mm) turbulent boundary layer

on the nozzle wall minimizes proue positicning errors and

thus facilitates accurate determination of the profile shapes.
Such a boundary layer. however, is subjected to a slight
frec-stream pressure gradient in the neighborhood of the
survey staiion because tic fiow 15 radial. {The corresponding
dach number rise is about 3 percent por tunnel caliver at the
survey planec for a Mach number of 5 and decreases with
increasing Mach number.) It is felt that the effect of the
pressurc radient ou ihe profiles is small. The wall tempera-
ture, v the other hand, is maintained practically constant
ncar room temperaiure over tac entare length of the nozzie,
excepi at the tinroat where the surface temperature approaches
the recovery temperature. In all tests the transition from
laminar to turbulent boundary layer occurred slightly down-
siream of the nozzle throat*., The exact effect of the history
on the local boundary layer characteristics is, of course,

aot fully known and the results must be interpreted with this
fact in mind.

6. Reynolds numbers and the raie of hecat transfer to the
wall are controlled by the supply pressure and the supply
temperature., In all tests the Reynolds rumbers based on
Loundary layer thickness are roughly two crders of magni-
tude greater than needed to make slip flow effects at the
surface negligible {reference (f)). Since the wall tempera-
turc is always maintained near room temperature, the lowest
rate of heat trangfer to the water-cooled nozzle that could
i¢ realized corresponds to a supply temperature which is just
i h enoupzih to avold air condensation in the test section.

7. For csch survey, Pitot and static pressures, stagnation
ana wall temperatures, and the wall temperature gradient
perpendicular to the nozzle surface are recorded, Static
pressures are measured by a 0.64 mm diameter orifice in the
wail and Ly a static probe in the frece stream just outside
the edge of the boundary layer. The static probe is an §°
cone cylinder with orifices located 17 diameters aft of the
shoulder, Figure 2. It is mounted from the side wall with
1ts axis parallel to the flow. Since agrcement between
wall- and free-stream static pressures is within 1 percent,
a constant static pressure has been assumed to exist through
the boundary layer. The measurements arc made with silicone
011 manometers of¥ 2 microns measuring accuracy.

*Surfacc probe tests made subsequent to the results reported
;n reference (e) indicated that the Loundary layer profile
reported in this raeference was close to the transition region.
It was definitely established, from the results of the sur-
face probe tests, that all boundary layes profiles presented
herein were measured in the fully turbulent regicn.

2
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8. The 2Pitot pressure is surveyed from wall to frce stream
with a flattencd hypodermic tube of 0.125 mm half height,
Figure 2. The opening is large enough to avoid errors due

to slip flow effects on the prussure measurements in the
rezion of low Reynolds number in the boundary layer near the
wall (reference {g)). The probe is mounted in a micro-
traverse mechanism which also accommodates the connection

to the pressure pgauge. The position of the centerline of
the probe is measurcd rclative to the position of electrical
contact between probe and wall with an accuracy ¢f£*0.025 mm.
Impact pressures above 20 mm Hp are measured with a precision
mercury manometer of £ 0.1 mm measuring accuracy. For the
lower pressures a silicone oil manometer is used.

9. A stagnation temperature probe with a single platinum-
coated siliza shield is used for the temperature surveys

of the boundary layer, Figure 2 (reference (h)). For the
reasurements close to the wall, a flattened probe with a
nalf height of 0.48 mm is used. The temperature recovery
factor of the probes reaches a value of 0.998 for large
Reynolds numbers. The variation of the temperature recovery
facior with flow parameters for each probe is described by
2 Single calibration curve by relating the calibration data
to uite flow conditions inside the probe. Reference to this
curve makes it possible to determine sccurately total and
static temperatures throughout the boundary layer from
measured temperatures and pressures. The e.m.f. output of
the temperature probe is recorded on Brown temperature
recogders. The temperature neasuremeunts are accurate to
20.2% ©.

10. Ioncal valucs of the heat transfer to tht nozszle wall and
nozzle surface temperatures at the boundary layer survey
station are obtained from temperature measurements in the
nozzle wall. These measurements are made with four thermo-
couples imbedded in the nozzle wall at various distances

from the surface (reference (d)). Dspending upon the
operationnl conditions of the tunnel and the rate of coolant
flow to the nozzle, equilibrium readings zre reached after

10 to 20 minutes of tunnel operation. They show that the
temperature drops linearly from the nozzle surface. Previous
investigations indicate that longitudinal and lateral tempera-
ture gradients at the nozzle surface can be neglected
(reference (d)). The wall temperatures are mecasured to within
20.01° C with a Leeds and Northrup K-2 type potentiometer.

Data Reduction

11. The experimental data needed to evaluate the boundary
layer profiles are:

a. Pitot pressure, pj, vs. distance from wall

3
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b. Static pressure, p. taken constant

c. Measured total temperature, T;, vs. distance from
wall

d. Variation of probe temperature recovery factor with
flow parameters

Since p) and T; are not always measured at identical

positions from the wall, both sets of data are taken at
sufficiently close intervals so that the temperatures corrcs-
sponding to impact pressur2 rveadiangs at a particular position
can be interpolated from a curve faired through the tempera-
ture data.

12. The numerical evaluation of the data is done on the lIOL
Card-Programmed Calcuiator., The Rayleigh formula is used to
compute the Mach number profile from pj and p (reference

(i)). To evaluate the stagnation temperature, T;, from the
measured T; values requires reference to the calitraticn

curve of the probe (reference (h)). This curve gives the
recovery factor of the probe in terms of the measured total
temperature and the gressure, Py, behind the bow shock in

front of the probe

7/4
ry " f(pz/RTi ) (1)

13. To ecalculate the friction velocity, ug, for the ut,

y* representation (reference (j)) of the boundary layer
velocity profiles, the wail shear stress, Ty is calculated

either from the slope of the velocity profile in the laminar
sublayer

T, =(H g;,-‘-)w (2)

or from the temperature measurcmants in tha nozgzle wall,
using the following equations:

- (AT/Ay)k
St = 3
w o - w) cp Fa)“a) (3)
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and the Reynolds analogy (reference (k))

2/3
Te = Sty Pr' P tis (4)

Values of AT/ Ay are obtained from the measured wall
temperature gradient and values of T, were calculated using

= pri’3 gith pr = 0.72.

RESULTS

Roundary Layer Profiles

14. Naturally turbulent boundary layers were surveyed at
free-siream Mach numbers of 5.0 to 8.2. These surveys were
made at different Reynolds numbers Reg and various rates

of heat transfer to the nozzle wall, as listed in the
following table:

um Ree (Te - Tw)/Te
4.93 5,350 0
5.0 6,480 0.223
5.03 7,950 0.373
5.06 7,370 0.420
5.75 11,600 0.108
5.7 12400 0.239
5.82 11,400 0.379
6.83 8,550 0.325
6.83 12,640 0.443
6.78 8,400 0.437
6.78 7,900 0.500
7.67 8,130 0.487
8.18 9,540 0.496

A tabulation of the coumplete data is given in Table I

(page 22) and Appendix A. Typical plois of the basic data
ave shown in Figures 3 through 6. The data points close to
the wall that were influenced by the presencc of the wall
were omitted from all figures and tabies.

5
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15. For most of the curves, a dimensional distance has been
sclected for the awscissa in order to show more clearly the
physical differcnces between the profiles at different heat
transfer rates. For the same reason some of the curves and
data points have ween omitied from Figures 3 through 5. Shape
differences are pronounced only in the temperature proiiies
of the boundary layer, Figures 4 and S. The static tempera-
ture profiles, Figure 5, obtained with heat transfer have a
temperature maximum close to the wall. The temperature at
the maximum point or those still closer to the wall could
not bte evaluated from measnred air temperatures because of
the physical size of thc temperature probes. In the cases
where heat transfer data have bcen measured in the nozzle
wall (see Table 1), the slope of the temperature curve
immediately at the wall has been deduced from the tempera-
ture gradient in the nozzle wall

AT AT
(k—) = (k-2— (5)
ay wall &Y air

(Values of the thermal conductiviiy of air have been taken
from reference (a)). The curve through the measured data
and the computed slope have been joined to give a smooth
shape to the static temperature curves. (Since only the
squarc root of the temperature enters into the computation
of the velocity, the velocity profile close to the wall was
found to be insensitive to errors in T due to incorrect
interpolation betwcen the last measured air temperature and
the wall temperature.)

16. The velocity profiles at any one Mach number, Figure 6,
are similar in the turbulent outer part. A sharp change in
slope, near the wall, roughly specifies the extent of the
laminar sublayer. Within this sublayer thc velocity varies
linearly with distance; the slope, however, increases with
increasing heat transfer.

17. It should be notcd here that velocities deduced from
Pitot measurements in the laminar sublayer may be slightly
high due to the effect of velocity fluctuations on the Fitot
pressure readings cl to the wall. Since the fluctuating
velocity component, u’ is always positive, the Pitot tube
measures total pressures that are always somewhat greater

than the effective total pressurce by the amouvnt §}>;T2.

In Figure 7 the variation of (u' /uz) with nondimensional
distance, y*, from wall is shown for the incompressible data
of references (m), (n), and (o). Although there is consid-
erable scatter, the curve was drawn by giving the greatest
consaderation to the trend indacated by the larger bulk of
data. On the assumption that the incompressible rcsults of

6
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Figure 7 are applicable to the present data, the laminar
sublayer velocity profile data can be adiusted by the method
given in reference (m). This adjustment indicates that the
measured velocities at the edge of the laminar sublayer may
be higher than the true velocity by 2 maximum amount oi

3 percent

Nondimensional Velocity Profile Representation

i8. Turbulent boundary layer velocity profiles arc very
often prescnted in nondimensional coordinates which may be
computed either on the Lasis of wall properties, u? and

y*, or local properties at vach point ia the boundary layer,
u* and y* (see¢ list of symbols). Figures 8 to ll show

all the measured velocity profiles in the wu*, y* coordinate
system. A pronounced upward shift of the turbulent portion
of the curves with increasing heat transfer is apparent for
each Mach number. A similar shift has Leen observed by
Deissler (reference (p)) in his experiments with subsonic
compressible turbulent boundary layers ia papes. The position
of thc three upper curves o2 Tigure 10 relative to each other
indicates that a Reynolds number effect is probably super-
imposed. According to the respective values oi the heat
transfer parameters for these surveys, a different spacing

in the turbulent portion would be expected.

1¢. In addition to this Reynolde number effect the data in
the outer turbulent portion of the profiles (Figures B to ll)
apparently disperse with Mach number and heat transfer
parameter, or some combination thereof. in an effort to
determine a parameter which would eliminate the dispersing
effcect of at least one of the guantities mentioned above,
the values of u* and y* were evaluated for esach point
in the boundary layer for each of the measured profiles. A
plot of thesc results indicated a tendency toward a single
curve for each Mach number, with the dispersing effect of
the different heat transfer rates removed, but not that of
the Reynolds number. It was found that this dispersion of
the data could be removed by dividing the y* coordinate
by the respective values of the shape paramcter (H). The
data for any one Mach number then converge to a single
curve, (Figure 12). With increasing Mach number the curves
fan out in an upward direction. That this displacement is
systematic is demonstrated in Figure 13 which shows a cross
plot of the data of Figure 12. The eaturally turbulent
Loundary layer data of reference (t), as well as the ¥ =0
results are included in Ficsure 12.

20. The data of Figures 6 to 11 may be used to examine some
of the fundamental assumptions of severazl of the theoretical
treatments of compressible turbuleant boundary layers. It ls
implicd in these analyses (references (q), (r), (s) that the

7
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edge of the laminar sublayer occurs at a fixed value of

ut = y*, and that the slope of the turbulcat portion of the
ut, y* curve is constant. regardless of Mach number or hecat
transfer conditions. It should be uoted that the results
of Figures 8 to 11 show that these assumptions are not
generally valid.

Velocity and Thermal Sublayers

Z1. It is apparent from the curves of Figures & through 11
that tihe u*, y* velocity profile representation only roughly
specifies the extent of the laminar sublayer. The edge of

the velocity subiayer can be accurately determined from a

plot of the coordinates u/ugp against y/d on logarithmic
paper. On such a plot it is found that the outer turbulent
position of the boundary layer may be wecll fitted with a
straight line, the slope of which is the exponent in the

power profile representation of the turbulent boundary layer
profiles

- (yrdH)® (6)

in the laminar sublayer, a straight line of unit slope may
Le drawn quite accurately through the data. The point of
intersection of these two straight lines is defincd as the
edge ui the laminar sublaver. Figure ld4 demonstrates the
resulls of this procedure applied to the data of several
typical profiles. The intersection points indicated are
fairly insensitive to the slope of the line faired through
the experimental data in the turbulent portion of ihc veloc-
ity profile,and therefore the scatter of vthe cxperimental
dota does not seriously affect the determination of this
point. A sumilar procedure may be used to detcrmine the
edge of the thermal sublayer. The thicknesses of the veleoce-
ity and thermal sublayers have been determined for all of
the measurcd profiles and the values of u,/ugy , (efL/d')u,

(JL/J)T, and n are tabulated in Table I (page 22).

22. A comparison between the values of (dx/hf)u and
(<1L/af)T. Table I, shows that the thermal sublayer is 1n

all cases thicker than the velocity sublayer. According to
the anzlysis of reference (v) the relative thicknesses of

the thermal and velocity sublayers are related to the turbu-
lent Prandtl num.cr. For the present casc of taermal sub-
layers tihicker than the velocity sublaver Reichardt's tneory
predicts a turbuleai Prandtl number larger than the molecular
Prandtl number. Preliminary evalvation of this guantity fov

5
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the zern heai transfer case of M = 4.93 and a molecular
Prandtl number of 0.72 using the eguations given by Rubesin
(reference (w)) yiclded a value for the turbulent Irandtl
number of the order of 0.9.

Discussion of Skin Friction Data

23. Because many of the theoretical treatments of compress-
itle turbulent boundary layers involve properties of the
laminar sublayer, emphasis was placed on determining the
velocity and temperature distributions in ihis region.
Furthermore these data facilitate the accuraie determination
of surface shear stress from the velocity nrofile sicpe near
the wall.

24. TFor most of the measured profiles, the surface shear
stress was calculated from the slope of the velocity profile
in the laminar sublayer and the heat transfer data using
Reynolds analogy. as described previously. Values of cg

and Stg obtained for all the profiles are tabulated in
Table I. In gereral the values of Cg determined from the

velocity profile data are up to 5 percent larger than those
determined from the heat iransfer measurements. A possible
explanation for this discrepancy nay Le given by considering
the previously mentioned effcct of the velocity fluctuat:zons
on the Pitot pressure data. Assuming that the inccompressible
results of Figure 7 can Le applied, the laminar sublayer
velocity profiie data were corrccted Ly the mcthod indicated
in reference (m). Values of wall shear stress were then
computed from the adjusted velocity profiles. This procedure
brings the shear stress valucs from the heat transfer data
and velocity profile data in closer agrcement {see Table I).
The two values are well within the experimental accuracy of
the data.

25. The good agreement between skian friction coefficients
obtained fron the velocity profile data and those determined
from the measurcd heat transfer, using Reynolds analopy
demonstrates the applicability of Reynolds analogy at hyper-
sonic alach numbers. That the Reynolds analogy is applicatle
for supcersonic flow up to o« \Mach number of about 3.2 has been
shown by Seiff (reference (x)). The present data, plotted
together with those of reference (x), show that at hypersonic
Hach numbers the Reynolds analogy maintains the same form
found to be accurate for lower supersonic speeds. The present
data are especially convinecing cvidence Lecause the Stanton
numier and the skin {riction cocfficicnt were determined
simultancously Ly two independent experancntal methods whereas
the results of refercence (a) were calculated by "interpolating
the skin fraiction daia to cqual comdiiions of Mach numb.er,
wall to frece stream temperature ratio, and Reynolds numbesr. -

)
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26. In the ficures which follow, the experimental values

of Cy used are those determined by the velocity-profile

slope technigue. These values of cg Wwere used, not in

preference to those obtained from the heat transfer measure-
ments, but only because there arec some cases for which heat
transfer measurements are not available an¢ it was desired
to preserve consistency in the plotted results.

27. The values of Ces used to form the ratio cf/cfi

were calculated from the Karmien-Schoenherr equation for
the same Re9 value for zero heat transfer

c,, = 0.536 7

fi .
(1og102 Reg)(logloz Redr0.868)

The Reynolds number based on momentum thickness was used
instcad of the customary Reynolds number based on the
distance from the leading edge. A I -~--olds number based
on a boundary layer parameter was selected because of the
arbitrariness inherent in calculatiang an effective leading
cdge for boundary layer measurements on a wind tunnel wall.

28. The variation of cf/cfi with heat transfer parameter

(T - Ty)T, is shown in Figure 15 for all of the data of

the present investirration. Also shown on this figure are
curves calculated using an extended Donaldson analysis
reported in reference (u). For those values of Mach number
for which several cata points are available (M = 5.C, 5.8,
and 6.8), the results indicate that increasing valucs of
heat transfer parameter have little effect on the skin
iriction ratio. On the cther hand, Van Driest and Monaghan
(references (s), (y)) predict an increase in the skin friction
ratio up to about 10 percent for the haighest heat transfer
case investigated in the present experiments. It should be
noted, however, that it is implied in these analyses that
the edee of the laminar sublayer occurs at fixed values of
at and y?*, and the slopc of the turiulent portion of the
u*, y* curve remains constant regardless of Mach numier or
leat transfer conditions. As pointed out previously, tLhe
results given in Table I show that thesc assumptions are not
generally valid. This is morc evident from Yigure 16 in
which the values of ug = yg are plotted as a function of

the heat transfer paramcter. Also shown are the associated
theoretical curves derived from reference (u). Thesce figures

10
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indicate that Mach number has little influence on the
variation of uL*= y, with (T, - T )/T,. It appears,

however, from these results that cautxon shou;d be exercised
in using thcories which embody constant values of u = yL

for cases of heat transfer.

28. Th¢ variaiion of cf/cfi with Mach number is shown in

Figure 17 together with the diiect skin friction measurements
of Coles (reference (z)) and the deduced skin friction data
of references (a), (q), (r), (t), (y), (2}, and (aa). In
the preparation of this figure the data for M = 5 and 6.8
were reduced to the casc of zero heat transfer by fitting
the results of Figure 15 with a straight line using the
method of least squares, For the other Mach numbers the
zero heat transfer points were obtained by estimating the
slope of a straight line ~hrough the data consistent with
the ¥ =35 and 6.8 results., The position of the data
points on this figure was fixed by plotting the variation of
cf/cfi against Reg for each Mach number and selecting

the values of cf/cfi at a constant value of Re0 of 8,000.
This value of Rco was selected bLecause it represented a

Reynolds number for which the greatest overlap of data
existed. It is apparent that the cf/cfi variation with

Mach number is a smooth continuous curve for a constant
Reynolds number. Also shown in this figure are the theoreti-
cal predictions of reicrences (q) and (u) for a constant
Reynolds number of 8,600 and zero heat transfer. The close
fit of the experimental data with the theoretical curves
indicatesthat the theories of references (q) and (u) may be
used to predict with good accuracy the variation of skin
friction coefficients with Mach numher for the zero heat
transfer case.

CONCLURING REMARKS

30. Detailed investigations of turbulent boundary layer
velocity and temperature profiles have been made on a nozzle
wall of the NOL 12 x 12 cm Hypersonic Tunnel No. 4 at Mach
numbers of 5.0, 5.8, 6.8, 7.7, and 8.2 for varying crates of
surface heat transfer.

31. The experimental results show that turbulent boundary
layer profiles in hypersonic flow gualitatively resemble
turbulent boundary layer profiles in incompressible flow in
many details,

3<. All velocity profiles measured can be fitted with a
power law in the cuter turbulent portion.

11
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33. As in the case of incompressible fiow, the turbulent
portion of the profiles differs in shape from the logarithmic-
law velocity profile. The discrepancy increases with
increasing heat transfer.

34. The dispersing effccts of Reynolds number and heat
transfer paramcter exhibited in ihe u*, y* velocity profile
representation for the outer turbulent portion could be
removed by basinpg the coordinaies on local pruperties at each
point in the lLoundary layer and dividing the distance parame-~
ter by the respective shape parameter (lI). The data for any
one Mach nunier then fall on a single curve. The velocity
profile curves show a sysicmatic displacement with Mach number.

35. The velocity profiles ia the laminar sublayer are linear.
The ratio of laminar suliayer thickness to total Loundary
layer thickness (ch/af)u decreases slightly with increas-

ing heat transfer rate but increcases considerably with
increasing Mach number at tic same heat transfer rates.

36. The ut-= y’ value at the edge of the laminar sublayer
for the zero heat transfer case is close to the incompressible
flow value, lowever, this u* = y* value is founcd to increcase
with increasing heat traansfer for any given Mach number.

37. The ratio of the theimal sublayer tihickness to the
total boundary layer thickness (ofL/aF)T was found larger

than (d'/d),;. The thermal sublayer thickness ratio is

unaffeccted by heat transfer but somevhat affccted Ly Reynolds
number,

38. The data stron~ly support the applicability of Reynolds
analogy for turbuleat lrundary layers in hypersonaic flow.

39. Values of skin friction coefficients calculated from
the heat transfer measurements by using Reynolds analogy
agree to within 5 percent with thosc skin friction values
deduced from the velocity profile slope in the laminar
sublayer.

40. For the test range of the heat transfor paramcter

(Ty - Tw)/Tc (approximately 0 to 0.5), values of the skin
fricticn cocfficient arec found to Le only slightly affectad
by heat transfer rate and are in accord with the direct skin
friction mecasurcments of Coles and other investigators whea
the results are based on a single value of Reynolds numlLer.

41. The present results extend the range of avallable skin
friction and heat transfer da’ta to a Mach numbcr of 8.2.

42. The detailed measuremeuts aof velocity and temperature
distributions across turbulent boundary layers in hypersonic
flow poesented here enlarpe the fund of available data for

turbulent boundary layers in compressible flows.
12
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